Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents
نویسندگان
چکیده
The effect of the mitochondria-targeted, plastoquinone-containing antioxidant SkQ1 on the lifespan of outbred mice and of three strains of inbred mice was studied. To this end, low pathogen (LP) or specific pathogen free (SPF) vivaria in St. Petersburg, Moscow, and Stockholm were used. For comparison, we also studied mole-voles and dwarf hamsters, two wild species of small rodents kept under simulated natural conditions. It was found that substitution of a LP vivarium for a conventional (non-LP) one doubled the lifespan of female outbred mice, just as SkQ1 did in a non-LP vivarium. SkQ1 prevented age-dependent disappearance of estrous cycles of outbred mice in both LP and non-LP vivaria. In the SPF vivarium in Moscow, male BALB/c mice had shorter lifespan than females, and SkQ1 increased their lifespan to the values of the females. In the females, SkQ1 retarded development of such trait of aging as heart mass increase. Male C57Bl/6 mice housed individually in the SPF vivarium in Stockholm lived as long as females. SkQ1 increased the male lifespan, the longevity of the females being unchanged. SkQ1 did not change food intake by these mice. Dwarf hamsters and mole-voles kept in outdoor cages or under simulated natural conditions lived longer if treated with SkQ1. The effect of SkQ1 on longevity of females is assumed to mainly be due to retardation of the age-linked decline of the immune system. For males under LP or SPF conditions, SkQ1 increased the lifespan, affecting also some other system(s) responsible for aging.
منابع مشابه
Mitochondria-targeted antioxidant SkQ1 inhibits age-dependent involution of the thymus in normal and senescence-prone rats
One of the most striking changes during mammal aging is a progressive involution of the thymus, associated with an increase in susceptibility to infections, autoimmune diseases and cancer. In order to delay age-related processes, we have developed mitochondria-targeted antioxidant plastoquinonyl decyltriphenyl phosphonium (SkQ1). Here we report that, at low doses, SkQ1 (250 nmol/kg per day) inh...
متن کاملImproved health-span and lifespan in mtDNA mutator mice treated with the mitochondrially targeted antioxidant SkQ1
MtDNA mutator mice exhibit marked features of premature aging. We find that these mice treated from age of ≈100 days with the mitochondria-targeted antioxidant SkQ1 showed a delayed appearance of traits of aging such as kyphosis, alopecia, lowering of body temperature, body weight loss, as well as ameliorated heart, kidney and liver pathologies. These effects of SkQ1 are suggested to be related...
متن کاملSkQ1 treatment and food restriction — two ways to retard an aging program of organisms
Effects of the mitochondria-targeted antioxidant SkQ1 and food restriction are compared. In both cases there is a remarkable increase in the median lifespan of organisms belonging to many different taxonomic ranks. Essentially, both SkQ1 treatment and restriction in food intake retard development of numerous adverse traits of senescence. This relationship could be predicted assuming that SkQ1 a...
متن کاملThe mitochondria-targeted antioxidant SkQ1 but not N-acetylcysteine reverses aging-related biomarkers in rats
Although antioxidants have been repeatedly tested in animal models and clinical studies, there is no evidence that antioxidants reduce already developed age-related decline. Recently we demonstrated that mitochondria targeted antioxidant 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SkQ1) delayed some manifestations of aging.Here we compared effects of SkQ1 and N-acetyl-L-cysteine (NAC) on ...
متن کاملAlzheimer's disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1.
We previously showed that mitochondria-targeted antioxidant SkQ1 (plastoquinonyl-decyltriphenylphosphonium) at nanomolar concentrations is capable of preventing and slowing down some cerebral dysfunctions in accelerated-senescence OXYS rats. Here we demonstrate that OXYS rats develop behavior, learning, and memory deficits against a background of neurodegeneration signs detected by magnetic res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2011